Marine Physical Laboratory interns rock it this summer!

MPL interns Eli Simmons, Louise Xu and Drew Vagen have been hard at work in our lab this summer.  Among their many accomplishments: creation of a new travel-time acoustic current meter (Louise), calculation of the flow through the Samoan Passage from a high-resolution model (Drew), and design and construction of many new mechanical devices (Eli).  Thanks to all of you for your talent and hard work this summer!  Since Louise is a UCSD student, we're happy that she'll continue with us this fall.

PastedGraphic-6.png
NSP_20170816-0001-IMG_4544.jpg
PastedGraphic-3.png
PastedGraphic-4.png

Gearing up for the Plumes experiment (PLUMEX)

Last February, we branched out pretty substantially from our usual bailiwick of internal waves and mixing, and grabbed some huge pumps and tanks in order to create artificial salty plumes of water that we then sampled with an ROV to watch them descend.  Why on earth would we do this?  Possible future deep sea mining operations will need to return the "tailings" they bring up from the sea floor, so it is crucial to know how they will descend and disperse.

In November we'll be continuing this on a cruise funded by the UC ship funds program.  First we'll create plumes with massive tanks of salt water and pumps.  We'll then use an ROV, an AUV, our Phased Array Doppler sonar, and side-scan sonars to image the plumes as they descend. Finally, we'll use our towed bodies to track them as the ambient currents sweep them laterally.

The ultimate goal is to inform future policy on responsible practices.

Bringing it all home

Sea-going oceanographers, like those aboard the R/V Sikuliaq today, have a cautionary principle that they always keep in the back of their minds.  When an expensive piece of scientific equipment, the vital infrastructure that makes up most of the budget for an ocean research team, goes over the side of a ship and into the sea you can’t expect for certain you will ever see it again.  The oceanographer designs every effort, makes every plan, and works every day to get the equipment and data back, but should never take as given that what goes in the sea will all return.

Dr. Jen MacKinnon and Dr. Matthew Alford wheel a mooring robot off the back deck. (photo: Thomas Moore)

The ArcticMix mooring stands 3452 meters tall in the middle of the Beaufort Sea and when it was deployed early in September the scientists and crew of the R/V Sikuliaq literally watched as they let slip into the deep over half a million dollars worth of technology.  And while there are plans and backup plans for how we will again find this undersea treasure, everyone aboard will sleep better when each meter of wire and scientific baubles are again tied to the deck.  Still there is no better way to measure the ocean across its entire depth over a long period of time than employing ocean moorings.  These hard-won scientific data from the real ocean are essential to formulating and tuning the global climate computer simulations that inform decision-makers and regularly make the headlines

The primary study zone for the ArcticMix voyage is right on top of what the National Snow and Ice Data Center (NSIDC) has called ‘a striking feature of the late 2015 melt season’, a period that has ended as the fourth lowest Arctic sea-ice minimum on record.  Over 19 days, as the R/V Sikuliaq made additional ocean observations nearby, the ArticMix mooring stood steady listening and learning about its patch of the Beaufort Sea.

The Arctic is a strange place oceanographically, an up-side down version of the normal ocean in that the surface water is cold and fresh while lurking below is a reservoir of warmer, saltier water, heavier than the surface layer due to its high salt content.  One hypothesis in a rapidly-changing Arctic is that increasing open water allows storms to mix this deeper ocean heat upward through the generation of undersea beams of energy called ‘internal waves’, in turn melting more ice.  The peculiar nature of the Arctic is what makes a hypothesis of a positive climate change feedback based on vertical mixing possible.

Dr. Matthew Alford is ready to hook the float of the undersea mooring. (photo: Thomas Moore)

In the first weeks of of our voyage the ArcticMix oceanographers witnessed remarkable levels of subsurface mixing.  Their sensitive instruments, leashed to the back of the R/V Sikuliaq by high-tech cables wrapped around specialized winches, saw billows of turbulence that looked just like a wave breaking on the beach, but much larger.  These underwater waves could easily reach into these regions of warmer water below the ice, possibly moving some of this heat upward when they break.

While the ArcticMix scientists darted across the Beaufort looking for signs of ocean mixing over wider swaths, the undersea mooring witnessed conditions minute by minute at a single location that serves as a scientific reference for the entire voyage.  The time comes to return to the scientific backbone of the entire experiment and find both the mooring equipment and all the invaluable data stored on many tiny memory cards, not unlike those in your nice camera except they are 3000 meters under the ocean.

Fair weather in the Arctic. (photo: Thomas Moore)

The morning of the recovery breaks with fair winds and calm seas, the decks of the R/V Sikuliaq awash with sun for the first time since we had left Nome over 3 weeks earlier.  Best of all there was no ice to be seen.  Sea-ice, driven by the wind and currents, was completely out of our control and could easily have moved to cap the sea here, freezing our scientific assets beyond the reach of Sikuliaq.  The ArcticMix team won another calculated roll of the dice, as the risk of mooring a five hundred thousand dollar scientific bet in an ice-filled Arctic looked to be paying off.

A button is pushed and a special transducer puts a coded ping of sound into the water.  Somewhere, well over two miles below the stern of our ship, another device hears the command and releases its grip on the bottom.  The ArcticMix mooring rises slowly to the surface, four feet or so every second, and within 45 minutes it’s at the surface.  The top buoy is hooked and bit by bit and inch by inch the mooring is brought aboard in the Arctic sunshine.  Instruments are quickly washed and rushed back into the science lab for data transfer.  A team of graduate students and scientists swarm over the gigabytes of data filling the ships server and soon the first preliminary plots fill our computer screens.  The mooring has witnessed exactly the kind of wind generated internal waves we’ve been looking for.

Preliminary analysis of ocean currents measured by an undersea mooring over 19 days.

One of the measurements captured on the undersea mooring is the velocity of currents through a wide range of ocean depths.  When these currents are displayed as a long series over time the clear signature of internal waves can be seen.  These beams of energy, generated by the storm that passed over the Beaufort Sea weeks earlier, descend into the deeper layers of the ocean where they can “break”, and as we observed elsewhere in the Arctic, heat can be mixed into surface waters a bit like hot coffee in cold cream.

What we have seen so far in the Arctic has certainly not refuted the hypothesis there there could be a positive feedback in regional changes in sea-ice cover that could lead to an increased rate of melting.  The marked energetic mixing we have seen here at the heart of the Arctic ice-melt zone could be a key in understanding a potential new climate feedback.  But for now the hard work lies ahead of the ArcticMix scientists for they must carefully untangle the complex processes involved to to distinguish typical seasonal melting from longer term change, with the goal of providing new insights that will help improve the accuracy of climate forecasts for the Arctic region.

[by: Thomas Moore, for the ArcticMix team]

 

Anchoring an Arctic story down deep

Dealing with the 49″ Syntactic Foam Float on the back deck.

For most of us in our daily lives we think of our world in three dimensions.  We need to get up out of bed, across the floor, and through the door to the kitchen to make the coffee.  But when it comes to observing the physical nature of planet earth what is happening at a given location in three-dimensional space is only half of the story.

As part of their training one of the fundamental skills an oceanographer learns is to think beyond three dimensions, to include time and the change at a given location over time in their scientific perspective.  It’s not enough to go somewhere and have a look just once.  Without gathering data and building computer models in this fourth dimension we wouldn’t know that the sea-ice at the very spot in the ocean we are floating on at the moment has changed rapidly over the past twenty years.

Mike Gregg , Matthew Alford, and Gunnar Voet at the wire.

So scientists talk about things they are observing in terms of space and time, scales of ocean measurement that fundamentally define how rich or spare their digital libraries of data become.  And how well sea-going oceanographers can see things over these scales are ultimately dependent on the scientific gadgets in their tool box and which ones they choose to put into water.

The research vessel Sikuliaq is a capable moving platform for our suite of custom ocean tools and her role is to take this technology all across the Beaufort Sea where it can best be put to use.  But a ship can’t be everywhere in the Arctic at the same time and so there are gaps, blind spots, but we can help fill those by deploying what ocean researchers call a mooring.

A mooring is a towering string of scientific instruments thousands of metres tall supported by giant floats at the top and held to the seabed by a beefy weight.  And on this mooring, this undersea science station, we put robots.

Crew of the R/V Sikuliaq ease a MP robot over the side.

Deploying an ocean mooring in over 3000 meters of water is no mean feat, it is one of the bread and butter professional competencies that a group like the ArcticMix team must have and work relentlessly to maintain.  A highly technical and often hazardous operation that can take many hours on the back deck of a ship like the Sikuliaq, mooring deployments are often exposed to whatever weather and waves the sea decides is right for the occasion.

This voyage the weather and seas were mostly kind and the ArcticMix mooring was happily fastened to the mud on the bottom of the Beaufort, its top float suspended in the ocean currents a bit like a giant balloon on a string swaying in a watery breeze.

Before the anchor is dropped the top floats of the ocean mooring trail behind the ship.

Attached to this mooring are unique, recently developed ocean instruments called McLane profilers (MP’s).  MP’s are “wire-crawlers”, programable robots that descend and climb the mooring wire over and over and over again, one million metres worth of travel in their large internal lithium battery packs.

These profilers come jammed with an array of instruments that measure pressure, temperature, salinity, and most importantly current velocity across a longer vertical reach than any other tool in our oceanographic toolbox.  The following figure, calculated from MP data collected in the South China Sea in 2007, shows the kind of ocean current information that can be measured as time passes.  Scientists call it a “time series”.  

While the ArcticMix team aboard Sikuliaq spends the coming month exploring elsewhere, our mooring, fixed in one location, can observe ocean parameters over a long period giving us a base of consistent information to anchor the wider story of Arctic change.

[ by: Thomas Moore, for the ArcticMix team ]

The final countdown

Albatross fill the air, Tasman Island in the distance – the location for the TTIDE southern moorings. Photo: Thomas Moore

It’s the second weekend out here on the Tasman Sea for the TTIDE leg 3 crew aboard the R/V Revelle. Today we are pushing hard to finish recovering all four remaining moorings still in the water.  If the team can make all that happen before darkness falls tonight that will keep the TTIDE project ahead of schedule and give the scientists extra time to conduct “yoyo” and “towyo” operations – filling important gaps in our view of the internal wave energy pulsing across the Tasman Sea.  There are only a few days left until the R/V Revelle steams “back to the barn” and for all aboard it’s starting to feel a bit like the final countdown.

Dawn broke gray and chilly but the howling westerly wind and the short, steep windswell it generated has mercifully laid down.  It was a great way to start the recovery of TTIDE “M4”, a 2300 metre tall mooring designed to capture the energy of internal waves breaking in the shallowing waters of the continental slope using two highly specialised McLane profilers.

The McLane profilers are “wire-crawlers”, programable robots that climb and descend the mooring line over and over and over again, one million metres worth of travel in every one of their large internal lithium battery packs.  These profilers come jammed with an array of instruments that 

A McLane profiler breaks the surface. Photo: Thomas Moore

measure pressure, temperature, salinity, and most importantly current velocity at a finer scale and across a longer vertical reach than any other tool in our oceanographic toolbox.

The McLane data are invaluable, they are costly acquire, and each profiler runs on hardware and software that takes great skill and experience to operate.  The McLane profiler, often abbreviated as “MP” in casual conversation on the back deck, is the star of the show and everybody quietly anticipates the outcome each time one of these yellow beasts breaks the surface of the sea under the tug of our winches.  Did the wire-crawler survive the pressures of the deep and what data will it hold for the TTIDE team?

The first analyses of MP data are underway

Science, caught fresh from the sea

The MP’s have indeed brought a data harvest, fresh from the sea.  As moorings have been brought onboard the attached instruments are cleaned and logged before TTIDE team members get busy up forward in the analytical labs extracting the data onto a dizzying collection of hard drives.

Time is always short aboard ship but TTIDE scientists have started to look at the new MP data in the past 24 hours, building the initial analyses of what an underwater robot has learned from crawling a mooring wire for many months deep under the surface of the Tasman Sea.  This first look at the MP data shows the clear fingerprints of the daily tide, lunar cycle, and the passing of swirling mesoscale eddies as they swept over the slope 20 kilometres or so off St Helens, Tasmania.

Prof. Matthew Alford works on a MP back in the ship’s lab. Photo: Thomas Moore

When the TTIDE scientists finally return home* they will bring all the fresh science they have caught into their data kitchen and cook up a better understanding of our earth, climate, and ocean.

[ by: Thomas Moore, for the TTIDE team ]

* “home” means many things for the diverse TTIDE team, made up of experts from the University of Minnesota – Duluth, the University of Alaska – Fairbanks, Oregon State University, the University of Washington, and the Scripps Institution of Oceanography.